

Functionalization of hard tissue implants surface by plasma electrooxidation

Wojciech Simka

Silesian University of Technology Gliwice, Poland Osteoplant R&D, Dębica, Poland

17-19.10.2018, Sumy, Ukraine

Anodic oxidation

Anodic oxidation of metals and alloys

The process is based on **anodic polarisation** of the treated element

As a result of the process is

???

Electropolishing

AFM images of Nb before and after electropolishing

 $Me = Me^{z+} + ze^{-}$

SEM (a) and AFM (B) images of Ti-13Nb-13Zr alloy before and after electropolishing

M. Sowa et al. / Materials Science and Engineering C 42 (2014) 529–537 / W. Simka et al. / Surface & Coatings Technology 213 (2012) 239–246

Anodic oxidation

1000 -

100 µm

(d)

Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, *et al.* TiO₂ nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science. 2007;11(1-2):3-18.

Plasma electrolytic oxidation (PEO)

R.O. Hussein et al. / Electrochimica Acta 112 (2013) 111-119

J.

Parameters:

- Voltage
- Current type (AC, DC, pulse)
- Current density
- Electrolyte chemical composition
- Temperature
- Time
- Pretreatment

Different results:

Plasma electrolytic oxidation (PEO)

- Morphology, topography
- Oxide layer thickness
- Chemical composition of oxide layer
- Mechanical properties
- Corrosion resistance
- Biological properties

Corrosion and wear protection

PEO of AI in silicate solution

Corrosion and wear protection

PEO (on AA7075) 5140 steel Hard Anodising 0 200 400 600 800 1000 1200 1400 1600 1800 Hardness (HVo.1)

100

50

Similar to anodising: Uniform coverage of complex shapes Well-controlled, predictable growth Non-columnar structure: Superior edge protection Less susceptible to corrosion, wear Lower fatigue debit

KERONITE, UK

Chrome-free Mg corrosion and wear protection

Ti6Al4V wear protection

Aluminium wear protection

Thermal barrier protection, optical surfaces, high power dielectric insulation

www.keronite.com

Corrosion and wear protection

Magnesium and aluminium alloys

in cooperation with Pratt & Whitney, Rzeszów, Poland / and Rzeszów University of Technology

Corrosion and wear protection

Magnesium and aluminium alloys

in cooperation with Pratt & Whitney, Rzeszów, Poland / and Rzeszów University of Technology

Improvement of corrosion properties

12

10

The photodegradation of aqueous methyl orange (MO)

5 um

PEO catalyst for CO oxidation

X, %

100

80

60

40

20

a)

100 200 300 400 T, °C

-Mn-Cu
-Fe-Cu

▲ - Co-Cu

- Ni-Cu

c)

100 200 300 400 T, °C

X, %

100

80

60

40

20

b)

100 200 300 400 T, °C

X, %

100

80

60

40

20

I.V. Lukiyanchuk et al. / Applied Surface Science 315 (2014) 481-489

Biomaterials

PEO ceramic coatings

(in bone replacement)

Biomaterials

Si addition

Ti-13Nb-13Zr alloy after PEO process in silicate solution; 400 V

Zr after PEO process in silicate solution; 400 V

W. Simka et al. / Applied Surface Science 279 (2013) 317- 323 / W. Simka et al. / Electrochimica Acta 104 (2013) 518- 525

★anatase ★titanium

Biomaterials

Ca, P addition

Ti-15 Mo alloy after PEO process in Ca-P solution; 200-400 V

W. Simka et al. / Electrochimica Acta 96 (2013) 180- 190

Narodowe Centrum Badań i Rozwoju

Biomaterials

Ca, P addition

M. Sowa et al. / Materials Science and Engineering C 49 (2015) 159-173

Ti-13Nb-13Zr alloy after PEO process in Ca-P solution

Ca, Mg, P addition -5 Etched Nb 🔨 **Polarization curves of pure** -6 Nb and Nb after PEO Ca 300 V -7 . Ca 200 V log i (A cm⁻²) process in Ca-P solution, -8 Ca 500 V macroscale macroscale -9 dized -10 Ca 400 V g -11 500 0.5 1.5 -0.5 400 microscale E(V/SCE) Uanod (V) 0000 0 200 400 60 t (V) Nb after PEO process in Ca-Mg-P solutions, cross-sections and **EDX** mapping Narodowe Centrum niobium Badań i Rozwoju

Plasma electrolytic oxidation (PEO)

M. Sowa et al. / Electrochimica Acta 198 (2016) 91-103

Biomaterials

PEO of GumMetal dental implants

Macro view of GumMetal samples after PEO process

The SEM images of GumMetal samples after anodization at 128, 223, 342, and 473 V in Ca-P solution

The XPS spectra of GumMetal samples at energy range of 0–30 eV

Narodowe Centrum Badań i Rozwoju

Biomaterials

bioactive particles addition

TCP wollastonite silica

The roughness of samples and the layer thicknesses

Sample	Surfac	e rough	ness [µm]		Thickness of oxide layer µ
	Ra	Rq	Rz	Rt	
Ti-15Mo	0.28	0.36	0.11	0.30	<u></u>
TM-200-TCP50	0.35	0.45	0.82	0.13	1.25-1.75
TM-250-TCP50	0.71	0.90	0.12	0.22	2.10-3.10
TM-300-TCP50	1.42	1.73	20.10	37.96	4.15-4.60
TM-350-TCP50	1.64	2.03	41.84	142.57	5.85-6.70
TM-300-W50	1.30	1.58	13.85	24.92	3.40-4.60
TM-300-W100	1.37	1.65	19.06	31.16	3.10-4.45
TM-300-W150	1.50	1.82	35.06	130.79	2.50-3.50
TM-300-S50	1.01	1.25	21.67	47.58	3.90-4.35
TM-300-S100	1.20	1.47	13.75	19.06	2.85-4.50
TM-300-S150	1.07	1.31	12.61	23.07	2.75-3.60

wollastonite silica

Ti-Mo alloy after PEO process in wollastonite and silica suspensions

Fluorescence microscope images of MG-63 cells on 24 h (a) and 3 days (d) of culture on samples anodized in basic solution containing wollastonite

Biomaterials

Ag compounds addition

The SEM images of surface and cross section of anodized Ti-15Mo alloy as well as 3D reconstuction of its surface after PEO process

Polarization curves of Ti-15Mo alloy recorded in Ringers solution

Bacteriostatic investigations are in progress

sol-gel process

Biomaterials

bioactive

prevent **bacteria adhesion**, exhibit antibaceterial properties:

Staphylococcus aureus, Staphylococcus epidermidis Pseudomonas aeruginosa

degradation of polymer layer, drug release

cytocompatible

 Image: Section 1.60 vvv
 Ving # 200 K.X
 Date 11 Mar 2016
 Z

 Bigmel A = 000
 VVC = 2.5 mm
 File Nature = mx0_A631_5025.07
 Z

TiUnite (Replace; Nobel Biocare, Gothenburg, Sweden) (Ref:32217; Batch:432892) XPS/ESCA Surface chemical composition (%)				
Ti	14.4 %	P	7.1 %	
0	55.4 %	S	0.5 %	
С	21.8 %	F	0.1 %	
N	0.7 %			

TiUnite[™] Surface by NobelBiocare, Sweden

David M. Dohan Ehrenfest, POSEIDO. 2014;2(1); www.nobelbiocare@com

Biomaterials

-3400N x210 SE

PEO of dental implants with Osteoplant R&D Company, Poland

Dental implants in pig mandible

The SEM images of Osteoplant R&D implant as well as a drop view on the implant surface

> Narodowe Centrum Badań i Rozwoju

The surface SEM image of dental implant after test in pig mandible

Plasma electrolytic oxidation (PEO)

Main benefits:

- functionalization of biomaterials
- anticorrosive protection
- uniform and well adherent layers
- formation of (photo)catalysts
- anodization of complicated shapes
- **Disadvantages:**
- I don't have any idea©

Thank you for attention !!!

www.electrochemistry.polsl.pl

www.osteoplant.info

Narodowe Centrum Badań i Rozwoju Project no. POIR.01.01.02-00-0022/16, Development of technology and launching the production of innovative dental implants with increased osteoinductive properties