

Sumy State University Medical Institute

International Scientific and Practical Conference of Students, Postgraduates and Young Scientists "TOPICAL ISSUES OF THEORETICAL AND CLINICAL MEDICINE"

Dental implant surface – from micrometer to nanometer

Professor Maksym Pogorielov m.pogorielov@gmail.com

Dental implant

A dental implant is an artificial tooth root that is placed into your jaw to hold a replacement tooth or bridge. Dental implants may be an option for people who have lost a tooth or teeth due to periodontal disease, an injury, or some other reason.

What reason?

- There are up to 32 teeth per person
- There are 7 bn. people around the world
- Up to 225 bn. teeth
- Dental extraction is the most frequent surgical procedure performed upon humans

Brief history

- The first evidence of the use of implants back to 600 BC in the Mayan population
- In 500 BC, the Etruscans replaced missing teeth with artificial teeth carved from the bones of oxen
- Ancient Egyptians used tooth shaped shels for missing teeth restoration
- In the 1700s John Linter suggested the possibility of transplanting teeth of one human into another

Brief history – modern period

- In 1809, Maggiolo fabricated a gold implant wich was placed into fresh extraction socket
- In 1886 Edmunds implanted platinum disc into the jawbone and fixed porcelain crown
- In the early 1900s Lambotte fabricated implants with aluminum, silver, red copper, magnesium, gold and soft steel
- In the 1909 Greenfield made first iridoplatinum root design
- In 1938 Dr. Strock A.E. introduced Co-Ch-Mo alloy for implantology
- Boths first reported bone fusing to Titanium

Types of dental implant

- Subperiosteal implants
- Endosseous implants
- Transosseous implants

Osteointegration Per-Ingvar Brånemark

Osteointegration – is a direct connection between living bone and a load-carrying endosseous implant at the light microscopic level.

Prof. Per-Ingvar Brånemark (1969)

The apparent direct attachment or connection of osseous tissue to an inert, alloplastic material without intervening connective tissue

Mechanisms of osteointegration

2 weeks

2 months

Contact osteointegration

Distant osteointegration

Micrometer roughness

- Sand-blasting
- Acid-etching
- Alkali-etching
- Plasma spraying
- Anodic oxidation

		ii ii	
			A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
			A A A
	U		

	S _a value	Degree of roughness	Gritblasted	Etched	Plasma sprayed	Electrochemically oxidized
Straumann TPS	>2.0 µm	Rough			x	
Straumann SLA	1.78 μm*	Moderately rough	x	x		
Straumann SLActive	1.75 μm*	Moderately rough	x			
Astra Tech TiOblast	1.1 μm*	Moderately rough	x			
Astra Tech Osseospeed	1.4 μm*	Moderately rough	x	x		
Dentsply: Ankylos/ Friadent/Xive/ Frialit	>2.0 µm	Rough	x	x		
Nobel Biocare: TiUnite	1.1 μm*	Moderately rough				x
Zimmer TSV MTX	Unknown	Unknown	x			
Zimmer TSV MP-1 HA	>2.0 µm	Rough	x			
Camlog	> 1.1-2.0 µm	Moderately rough	x	x		
SPS Endopore	>2.0 µm	Rough				
Biomet Prevail (Ti-6Al-4V)	0.3 μm*	Smooth		x		
Biomet3i Osseotite	0.68 µm*	Minimally rough		x		

Micrometer roughness

Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Silva Lopez B, Arvidson K. Determining optimal surface roughness of TiO₂ blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone *Clin. Oral Impl. Res.* **12**, 2001; 515–525

Table 1. The mean and standard deviation of three samples of each surface modification. Each sample was measured at three sites with a laser profilometer

Sample	S _a (SD) μm	<mark>S_{cx} (SD)</mark> μm	<mark>S_{dr} (SD</mark>) μm
Turned	0.20 (0.02)	9.81 (0.61)	1.06 (0.02)
Blasted 63–90 µm particles	0.72 (0.04)	14.20 (0.65)	1.32 (0.02)
Blasted 106–180 µm particles	1.30 (0.11)	15.48 (0.71)	1.69 <mark>(</mark> 0.07)
Blasted 180–300 µm particles	1.38 (0.14)	15.73 (0.78)	1.76 (0.07)

Cell attachment

Cell proliferation

Dental Materials Journal 2011; 30(2): 183–192

Sandblasted-acid-etched titanium surface influences *in vitro* the biological behavior of SaOS-2 human osteoblast-like cells

Luca RAMAGLIA¹, Loredana POSTIGLIONE², Gaetano DI SPIGNA², Gabriele CAPECE¹, Salvatore SALZANO³ and Guido ROSSI²

Fig. 3 Cell attachment assay (mean \pm SD, n=12) of SaOS-2 cells on the experimental titanium surfaces, smooth (S) and sandblasted-acid-etched (SBA), *(SBA vs S p<0.05).

Fig. 2 Cell proliferation curves (mean±SD, n=12) of SaOS-2 cells on the experimental titanium surfaces, smooth (S) and sandblasted-acid-etched (SBA).

Micrometer roughness

In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates

P. Linez-Bataillon^{a,*}, F. Monchau^a, M. Bigerelle^b, H.F. Hildebrand^a

Fig. 2. Medium principal roughness parameters of each grade.

Nanometer roughness

Controlled Laser Texturing of Titanium Results in Reliable Osteointegration[†]

Melanie J Coathup BSc, PhD^{1*}, Gordon W Blunn BSc, PhD¹, Nazanin Mirhosseini BSc, PhD², Karen Erskine BSc, MBBS¹, Zhu Liu BSc, PhD³, David R Garrod MA, PhD, FRSA⁴, Lin Li BSc, PhD, FREng²

Laser Texturing (LT) Machine-finished (MF) Grit-blasted (GB) HA-coated (HA)

Nanometer roughness

Analysis of Osteoclastogenesis/Osteoblastogenesis on Nanotopographical Titania Surfaces

Robert K. Silverwood, Paul G. Fairhurst, Terje Sjöström, Findlay Welsh, Yuxin Sun, Gang Li, Bin Yu, Peter S. Young, Bo Su, Robert M. D. Meek, Matthew J. Dalby, and Penelope M. Tsimbouri*

15nm pillar

flat control

Nanometer roughness

Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration

A. Carradò^{a,*}, F. Perrin-Schmitt^{b,d,**}, Q.V. Le^a, M. Giraudel^a, C. Fischer^b,
G. Koenig^b, L. Jacomine^c, L. Behr^e, A. Chalom^e, L. Fiette^e, A. Morlet^e,
G. Pourroy^{a,*}

Our results

H2020 project 777926 "Nanostructural surface development for dental implant manufacturing"

Regional Poland projects "Development and commercialization of innovative dental implants with advances osteoinductive properties"

H2020 project 777926 "Nanostructural surface development for dental implant manufacturing"

Metal alloy (1) will be development and tested (2) to produce dental implants (3) that will modified using different methods (4) to obtain new nanostructures surface (5). Cell culture and bacteriological methods (6). Selected samples with modified surface (6) will implanted to pigs (7) and evaluated (8) in different time-points.

LIPSS treatment

Roughness	Polished	Polished	LIPSS,	LIPSS, Zr
parameters, µm	Ti6Al4V	Zr	Ti6Al4V	
Ra	0.006	0.007	0.131	0.148
Rz	0.013	0.017	0.316	0.386

Zr

sample no	bath composition			voltage, V	wettability,	
	Ca(H ₂ PO ₂) ₂ mol/dm ³	Ca ₃ (PO ₄) ₂ g/dm ³	CaSiO ₃ g/dm ³	SiO ₂ g/dm ³		deg
TNZ-350-TCP150	- 0.1	50	12		350	73±7
TNZ-450-TCP150					450	strongly hydrophilic
TNZ-350-W150			(1212)	6	350	61±6
TNZ-450-W150			50	G	450	85±5
TNZ-350-S150		-	(\sim	350	85±5 23±4
TNZ-450-S150			1	50	450	31±5
Ti-13Nb-13Zr		-	~	<i>.</i>	. 	120±5

SBF Ca absorption

Prof. Simka et al., 2015

Plasma electrolytic oxidation

First Results

What next? Perspectives

- It is not define ideal surface
- Method of treatment?
- Need surface functionalization
- Need increase biological properties
- NO clinical evidence

